Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products.

نویسندگان

  • P Cserjesi
  • E N Olson
چکیده

The myocyte-specific enhancer-binding factor MEF-2 is a nuclear factor that interacts with a conserved element in the muscle creatine kinase and myosin light-chain 1/3 enhancers (L. A. Gossett, D. J. Kelvin, E. A. Sternberg, and E. N. Olson, Mol. Cell. Biol. 9:5022-5033, 1989). We show in this study that MEF-2 is regulated by the myogenic regulatory factor myogenin and that mitogenic signals block this regulatory interaction. Induction of MEF-2 by myogenin occurs in transfected 10T1/2 cells that have been converted to myoblasts by myogenin, as well as in CV-1 kidney cells that do not activate the myogenic program in response to myogenin. Through mutagenesis of the MEF-2 site, we further defined the binding site requirements for MEF-2 and identified potential MEF-2 sites within numerous muscle-specific regulatory regions. The MEF-2 site was also found to bind a ubiquitous nuclear factor whose binding specificity was similar to but distinct from that of MEF-2. Our results reveal that MEF-2 is controlled, either directly or indirectly, by a myogenin-dependent regulatory pathway and suggest that growth factor signals suppress MEF-2 expression through repression of myogenin expression or activity. The ability of myogenin to induce MEF-2 activity in CV-1 cells, which do not activate downstream genes associated with terminal differentiation, also demonstrates that myogenin retains limited function within cell types that are nonpermissive for myogenesis and suggests that MEF-2 is regulated independently of other muscle-specific genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene expression of myogenic factors and phenotype-specific markers in electrically stimulated muscle of paraplegics.

The transcription factors myogenin and MyoD have been suggested to be involved in maintaining slow and fast muscle-fiber phenotypes, respectively, in rodents. Whether this is also the case in human muscle is unknown. To test this, 4 wk of chronic, low-frequency electrical stimulation training of the tibialis anterior muscle of paraplegic subjects were used to evoke a fast-to-slow transformation...

متن کامل

The myogenin gene is activated during myocyte differentiation by pre-existing, not newly synthesized transcription factor MEF-2.

The myogenin gene, a member of the gene family encoding muscle-specific basic-helix-loop-helix transcription factors, is activated in myoblasts at the onset of differentiation and can be induced in fibroblasts by forced expression of MyoD or its relatives. Here, we report that a small proximal promoter region of the Myf-4 gene, the human myogenin homolog, suffices to direct muscle-specific expr...

متن کامل

Myocyte enhancer factor 2C and myogenin up-regulate each other's expression and induce the development of skeletal muscle in P19 cells.

Two families of transcription factors, myogenic regulatory factors (MRFs) and myocyte enhancer factor 2 (MEF2), function synergistically to regulate myogenesis. In addition to activating structural muscle-specific genes, MRFs and MEF2 activate each other's expression. The MRF, myogenin, can activate MEF2 DNA binding activity when transfected into fibroblasts and, in turn, the myogenin promoter ...

متن کامل

Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D.

The transcriptional integrator p300 regulates gene expression by interaction with sequence-specific DNA-binding proteins and local remodeling of chromatin. p300 is required for cardiac-specific gene transcription, but the molecular basis of this requirement is unknown. Here we report that the MADS (MCM-1, agamous, deficiens, serum response factor) box transcription factor myocyte enhancer facto...

متن کامل

Synergistic interactions between heterologous upstream activation elements and specific TATA sequences in a muscle-specific promoter.

Previous investigations have defined three upstream activation elements--CCAC, A/T, and TATA sequences--necessary for muscle-specific transcription of the myoglobin gene. In the present study, we demonstrate that these three sequences elements, prepared as synthetic oligonucleotide cassettes, function synergistically to constitute a cell-type-specific transcription unit. Previously, cognate bin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 1991